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Abstnct. We investigate the effects of the synaptic noise in neural networks at h i t e  
temperamres. The &lytic resdts are obtained through the use of the path-integral formulation 
which facilirater per fming  the quenched average wer rhe random patterns and random noises. 
We consider the noise effects in the diluted Hopfield mcdel, the fully-cmnected Hopfield model 
and the dynamic mcdel, laying emphasis wr the interplay With the tempemre. In the phase 
diagrams drawn as functions of the tempera&, tho slorage. and the noise strength, interesting 
features including re-entrance, fist-order transitions Y well as second-arder transitions are found 

1. Introduction 

Neural-network models attempt to explain intriguing features such .as memory? l w n g ,  
fault tolerance, information storage and retrieval, etc. in terms of the collective properties 
of the system, see. for example, [l]. In spin-glass-lie models of neural networks [ 2 4 ] ,  
each neuron is Usually regarded as an Ising spin with two possible states: the spin-up state 
(s = +l) or the spin-down state (s = -1)  depending on whether,the neuron is, of is not, 
firing an‘electrochemical signal. The state of the network of N such neurons & defined 
to be the instantaneous configuration of all the spin variables at time r .  The neurons are 
interconnected by synaptic junctions of strength Jij ,  which determine the contribution of 
the signal fired by the j th  neuron to the postsynaptic potential on the ith neuron. Often the 
synaptic couplings are constructed of p given spin conEgmtions according to the Hebbm 
mle 

where the representing p (= a N )  stored patterns are regarded as quenched, independent 
random variables taking the values f l  with equal probability.’ Thiis assignment allows the 
networks to evolve from the given initial state into one of the p stored patterns. 

In general there exist fluctuations in the number of neurotransmitters released across a 
synapse, which necessitates a probabilistic description. Accordingly, the threshold behaviour 
of the ith neuron at time I is described by a probability that depends on the difference 
between the total potential on the ith neuron V; and its threshold value VO 
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where the external field b; cj J;j - VO is usually assumed to vanish, and sj(t - ZJ 
denotes the state of the j th  neuron at time 1 - rd with rd being the delay in the interactions 
if any. This probability function contains a parameter T(= ,T1) which plays the role 
of a temperature and which measures the width of the threshold region. However, the 
remperarure T is not to be understood as modelling the physical temperature of a biological 
neural network; it effectively controls the number fluctuations of neurotransmitters while 
the synaptic couplings are regarded as fixed. This approach allows for the application of 
standard techniques of statistical mechanics. 

There is also another way to consider the randomness which is unavoidable in the 
synaptic couplings of real biological systems. For example, we may introduce the static 
noise in synaptic couplings and modify (1.1) as follows 

(1.3) 

where the distribution of the noise q;j is, for simplicity, chosen to be a Gaussian with zero 
mean and variance €/N. Such a type of synaptic noise has been considered in the context 
of the nonlinear synapse and leaning 171, and analysed either at zero temperature [SI or at 
zero storage (i.e. in the case that only a finite number of patterns are stored) 191, displaying 
overall deterioration of the performance of the networks. 

The purpose of this paper is to investigate the effects of such synaptic noise in neural 
networks ai jinite remperancres and jinite srorages. It is important to note here that this 
noise, regarded as the intemal noise otthe synaptic coupling itself, is introduced on a very 
different footing from the temperature. We use the path-integral formulation [lo], which 
facilitates performing the quenched average over the random patterns and random noises, 
and consider, at finite temperatures and storages, the diluted Hopfield model [5], the fully- 
connected Hopfield model [3,4], and the dynamic model [6]. In the phase diagrams drawn 
as functions of the temperature, the storage, and the noise strength, interesting features such 
as re-entrance are found, which reflect the subtle interplay between the synaptic noise and 
the temperature. 

2. The diluted Hopfield model 

The asymmetric diluted version of the Hopfield model which has been solved exactly [5] 
can be generalized straightforwardly to include the synaptic noise. We thus introduce the 
synaptic noise according to 

where the G j ’ s  are independent, random parameters following the distribution 

c 
P ( C i j )  = p i j  - 1) + 

and compute the local field hi(() on site i 
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where qij  obeys a Gaussian distribution with zero mean and variance CE.  and @(I )  denotes 
the local field without synaptic noise. Here the time delay has been disregarded (rd 0), and 
K is the number of neurons~connected with the ith neuron. Since the spins si>. sh, . . . , sj, 
are uncorrelated for almost a l l  sites i, we may set 

where yi obeys a Gaussian distribution with zero mean and unit variance. We limit 
ourselves to the thermodynamic limit ( N  ~+ CO), and consider the Mauis-state solution 
described by the order parameter of the form & ( I )  = N-' Cfi, crui(t) =, m(t)6,1, where 
ui(t) (si(i)) is the activity of the ith neuron. As long as C << IogN, we stiU have the 
exact relation 

4 + 1) = f @ ( I ) )  W )  

where, for simplicity, the discrete time step has ken set qual  to unity. In the limit C 3 00 

and p + CO (with N 4 CO in advance), f(m) at temperature T(- p- ' )  is given by 

(2.3) 

where~a ( p  - 1)/C is the storage ratio. In the stationary state, we have m = f ( m ) ;  the 
critical temperature T, is @en given by f'(0) = ). + the absence of the synaptic noise 
(e = 0). (23) obviously~reduces tc~the  corresponding equation in [5]. Accordingly, the 
system with synaptic noise exhibits essentially the same behaviour as that without noise, and 
we just need to replace m.by a + E in the ksults of [5] .  For example, at zero temperature, 
the storage capacity is given by a, =~ 2/n - 6 for given saength of the synaptic noise, 
which shows the decrease of the capacity a. due to @e synaptic noise. It is also obvious 
that the maximum allowable noise is given by cc = Z/n: 'beyond ec, only a finite number 
of patterns can be stored in  the^ system. .. , 

3. The fully-connected Hopfield model 

The noise effects in the fully-connected Hopfield model have been studied via the replica 
hick, mostly at zero temperature [SI or at zero storage 191. Here we avoid the replica method 
which has some mathematical deficiencies. Instead we use the path-integral formulation 
[lo], which allows us to perfom the quenched averages over the random patterns and 
random noises exactly, and investigate the noise effects at finite temperatures and storages. 

The scheme of 1101 can be straightforwardly extended to the system with synaptic noise 
as given by (1.3). We consider, as usual, only a finite number of pattems (e', . . . , e ' )  to be 
condensed and the remaining ( p - l )  patterns to have an overlap at most of order O( l / f i ) .  
In this case the resulting extended dynamical mean-field theory leads to essentially a single 
neuron problem, and the local field in (1.2) can be replaced by ( id  = 0) 

(3:l) 
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Figure 1. Phase diagram in h e  (T, a) plane for vaious values of s 

where u(t) is the activity of a single neuron, and trip describes the overlap between the 
network and the condensed memory p. In (3.1), @ ( t )  and “(f) are Gaussian random fields 
with zero mean and correlations 

( @ ( I ) @ ( I ’ ) ) ~  = ~ ( t  - ~ r ‘ )  (q(r)q(r’))w = C(t - t’) 

and 
i E 

s ( t  - 2‘) = -S(f - f‘) - 8(t  - t’) - -G(t - t‘) 
a a 

where C(r) and G(t) are the autocorrelation and response functions, while R(I )  and S(t)  
are the random overlap comlation aid response functions, respectively. 

To extract the equilibrium properties of the model, we consider the activity as well as the 
macroscopic overlaps to be time-independent, and define the static order parameters as the 
long-time limit of the autocorrelation and the random overlap conelation: g = Iimt-,- CO) 
and r = limr+m R ( t ) ,  which are the Edward-Anderson order parameter and the mean 
square random overlap, respectively. This Enally leads to the static order parameter 
equations for the ideal Mattis state 

m = ( t a n h B ( z m + m ) )  (3.24 

q = ( t a n h 2 B ( z m + m ) )  (3.2b) 

where (( )) denotes the~Gaussian average over stochastic variable z. 
Equations (3.2) have been also derived via the replica method [8]. and analysed mostly 

in the zero temperature limit (B + CO). In this limit, as E is increased from zero, the storage 
capacity ac gets smaller, eventually approaching zero as E + E, = 2/a.  The corresponding 
zero-temperature phase boundary in the ( E ,  a) plane constitutes a first-order transition line. 
On the other hand, at zero storage (CY = 0) and for E > E,, the network can retrieve the 
pattern only at finile temperatures. This apparently indicates that probabilistic (rather than 
deterministic) operation of the network is advantageous in the presence of synaptic noise, 
which should be inevitable in the real system. From a different point of view, the synaptic 
noise may be interpreted as incompleteness of the pattern. causing a deterioration in the 
performance of the network to recall the imbedded pattern. 
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Figure 2. Overall phase diagram in rhe (T. a, 4 space. 

Figure 1 is the phase diagram in the ( T , a )  plane for various values of the noise 
strength E ,  exhibiting that the storage capacity of networks shrinks rapidly as the noise 
grows. It displays interesting re-entrant behaviour in the presence of synaptic noise. This 
obviously implies that the network can store more patterns at finite temperames than at 
zero temperature, again suggesting that probabilistic operation is desirable. This re-entrance 
appears to reflect the subtle interplay between the synaptic noise and the temperature 
measuring the uncenainty in the threshold behaviour of a neuron. The overall phase diagram 
 in the (7'. a, E )  space as determined by the solutions of (3.2) is shown in figure 2. The gray 
line connects points where the storage capacity ac reaches its maxima 

The network also exhibits spin-glass properties outside the memory-retrieval phase. To 
find the spin-glass transition temperature Tg, we expand (3.2) in powers of q and r. setting 
m = 0. The transition temperature is, to the leading order, determined by 

q 0 P ( a r  + €4)  

which yields 

q i  + E ( T ~  - il2 = T , ~ ( T ~  - ilZ. ~ 

In the absence of noise ( E  = O), this gives the well-known result 

(3.3) 

I 

T g = l + &  (3.4) 

while Tg &creases continubusly as E grows. The corresponding phase boundary is shown 
in figure 3, for E = 0.5 and 1 as well as for E = 0. 

4. The dynamic model 

The dynamic model for neural networks explicitly takes into account the existence of 
several time scales without discretizing the time [61. It does not possess a Hamiltonian, 
necessitating dynamic analysis such as the path-integral approach. The application of the 
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Figure 3. Spin-glass phase boundaries for f = 0, 0.5 and 1. 

path-integral method has been done in the absence of synaptic noise [ I l l ,  and again the 
corresponding dynamic mean-field theory can be straightfonvardly extended to the system 
with noisy synaptic couplings. It eventually leads to the following equations for the static 
order parameters 

(4.1~) 

(4.1b) 

(4.1~) 

where (( )) denotes the average over both the random patterns (ep) and the Gaussian variable 
z, and 

with 

1 - 2a + tanhph, 
1 + 2a + tanhph, 

M, 

We ag,~ investigate the Maltis-state s o l u ~ ~ n  of the order-parameter equation (4 . In 
the absence of the synaptic noise ( E  = O), the phase diagram displayed by (4.1) has been 
obtained in the (T. e, a) space [ 111, where a is the ratio of the refractory period to the action 
potential duration. Here we concentrate on the effects of the synaptic noise, and first consider 
the zero-temperature (T = 0) limit. We inmduce the parameter U 5 m / J m ,  and 
write equations (4.1) in the single form 

erf(u)[ efi(u) - 2ne-"'/A 
U =  (4.2) 

v " 2 ( 2 0 r  e&u) + 26 [&(U) - 2ue-u2/f12)"* 

where erf(x) is the emor function. The corresponding phase diagram in the (a, a, E )  space 
is shown in Iigure 4, where the phase boundary in the U = 0 plane coincides with the 
zero-temperature phase diagram of the Hopfield model. 
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Rigure 4. Zero-temperature phase diagram in the @,a. c) space 
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Figure 5. Phase diagram in the (T. a, G) space for a = 112 

Figure 6. Phase diagram in the (T, f, a)  space for CI ='O. 
.~ 

At finite temperatures, we may draw the phase diagrams for given values of a in the 
fT, a, E )  space; they show some difference according to whether a is equal to 1/2 or not. 
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In figure 5, the phase diagram in the (T ,  a. E )  space for a = l / Z  is plotted, which displays 
properties qualitatively similar to those of the Hopfield model. Thus the upper critical 
temperature for pattern reeieval remains unaffected by the synaptic noise, i.e. T, = 1/2. 
For a # 1/2. in contrast, this is not the case, and figure 6 shows how the phase boundary 
in the a = 0 plane depends on the value of a: the phase boundary forms a smooth surface 
except at a = l/2 while for a = 1/2, it extends to E = 1 with constant upper critical 
temperature (T, = 1/2) as also shown in figure 5. In the latter case (a = 1/2), the phase 
boundary displays a cusp singularity at (T ,  E )  = (1/2,1). 

We now investigatemore carefully this qualitaiive difference between the two cases 
(a = 1/2 and a # l/2) in the pattern-retrieval phase boundary. In [6], the simple case of 
zero storage without noise (a = E = ~ O )  has been studied, and for a z a. (& - I)/?-, 
the continuous transition l i e  T,(a = E = 0) = TO(- p;') has been found to be given by 
BO = (1 + 2a)'/4a. When E is small, the macroscopic overlap m is expected to be small in 
the vicinity of the transition l ie.  Searching for non-zero solutions for m, we thus expand 
the Mattis-state solution of equations (4.1) in small parameters m, E and f = @/BO - 1) 

(4.3a) 

M Y Choi et a1 

f = A(fmz + cq )  

(4.3b) 

with A - Bo(2aZ + 2n - l)/(Za). When a # l/2, the Edward-Anderson order parameter 
q is of the order of unity, and the transition temperature below which non-zero m exists 
follows kom (4 .3~)  

(4.4) 

On the other hand, for a = 1/2, the first term on the right-hand side of (4.3b) vanishes, 
and the transition temperature is unaffected by the noise. In fact the transition temperature 
is given by TC(6) = T'(a = l/2) = 1/2 all the way to E = 1. Thus the origin of the 
difference between the two cases in the memory-retrieval phase boundary again maces back 
to the spin-upspindown symmetry of the network, similarly to the case without noise 
(e = 0) [ill. 

5. Conclusion 

We have studied effects of the static synaptic noise in several neural network models such 
as the diluted Hopfield model, the fully-connected Hopfield model, and the dynamic model. 
The synaptic noise is treated as quenched random variables with a Gaussian disnibution, 
and the path-integral formulation has been applied as a convenient approach to the fully- 
connected model without the self-averaging property. The phase diagrams have been 
obtained as functions of the temperature T ,  the storage a, the noise saength E ,  and, in 
the case of the dynamic model, the ratio a of the refractory period to the action-potential 
duration. In the case of the fully-connected Hopfield model, the phase diagam reduces to 
the. known results in the appropriate limits. In addition, the diagrams obtained display quite 
new features, manifesting the subtle interplay between the two kinds of noise present in the 
system. In particular, the interesting possibility of re-entrance has been pointed out. There 
are several points for further study, particularly in the dynamic model, where the short-time 
parts have been assumed irrelevant to the static properties without clear justification. The 
case a = 1/2 also deserves some attention, for there exists qualitative difference owing to 
the presence of the spin-upspin-down symmetry. 
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